新增了调用llm做语义方向判断
This commit is contained in:
parent
2f758ba5db
commit
b9c88ca4c0
27
file_load.py
27
file_load.py
@ -9,9 +9,7 @@ from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
os.environ["OPENAI_API_KEY"]= "sk-PRJ811XeKzEy20Ug3dA98a34Af8b40B5816dE15503D33599"
|
||||
os.environ["OPENAI_BASE_URL"]= "http://154.9.28.247:3000/v1/"
|
||||
client = OpenAI()
|
||||
client = OpenAI(api_key="sk-PRJ811XeKzEy20Ug3dA98a34Af8b40B5816dE15503D33599",base_url="http://154.9.28.247:3000/v1/")
|
||||
|
||||
def batch():
|
||||
scales = os.listdir("Scales")
|
||||
@ -44,6 +42,17 @@ def old_type(str):
|
||||
with open(str,"w") as file:
|
||||
file.write(json.dumps(new))
|
||||
|
||||
def liguistic(a:str,b:str):
|
||||
completion = client.chat.completions.create(
|
||||
model="large",
|
||||
messages=[
|
||||
{"role": "system", "content": "请严格按照要求回答,不要有多余解释。\n判断这两句话的语意是否相反,相反返回True,否则返回False。"},
|
||||
{"role": "user", "content": a+'\n'+b}
|
||||
]
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
return 'True' in completion.choices[0].message.content
|
||||
|
||||
def calc_similarity(scale):
|
||||
item=[]
|
||||
vec=[]
|
||||
@ -56,6 +65,9 @@ def calc_similarity(scale):
|
||||
que=[]
|
||||
for i,v in enumerate(simi):
|
||||
for j in range(0,i):
|
||||
if liguistic(scale[item[i]],scale[item[j]]):
|
||||
simi[i][j]*=-1
|
||||
print("Opposite:",scale[item[i]],scale[item[j]])
|
||||
que.append({"from":item[j], "to":item[i], "similarity":simi[i][j]})
|
||||
return que
|
||||
|
||||
@ -96,14 +108,13 @@ def correlation():
|
||||
if i!=j:
|
||||
try:
|
||||
que[i,j]=data[i].corr(data[j])
|
||||
if i in rev:
|
||||
que[i,j]*=-1
|
||||
if j in rev:
|
||||
que[i,j]*=-1
|
||||
# if i in rev:
|
||||
# que[i,j]*=-1
|
||||
# if j in rev:
|
||||
# que[i,j]*=-1
|
||||
que[j,i]=que[i,j]
|
||||
except:
|
||||
pass
|
||||
else:
|
||||
break
|
||||
return que
|
||||
|
||||
|
2
main.py
2
main.py
@ -20,8 +20,6 @@ for i in similarity:
|
||||
s+=str(i["similarity"])+','+str(correlation[i["from"],i["to"]])+'\n'
|
||||
x.append(i["similarity"])
|
||||
y.append(correlation[i["from"],i["to"]])
|
||||
if(i['similarity']>0.5 and correlation[i['from'],i['to']]<-0.5):
|
||||
print(i,correlation[i['from'],i['to']])
|
||||
except:
|
||||
pass
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user