sorted similarity of item link
This commit is contained in:
parent
a150d02d7a
commit
727d4e57a8
50
ItemRelate.py
Normal file
50
ItemRelate.py
Normal file
@ -0,0 +1,50 @@
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"]= "sk-PRJ811XeKzEy20Ug3dA98a34Af8b40B5816dE15503D33599"
|
||||
os.environ["OPENAI_BASE_URL"]= "http://154.9.28.247:3000/v1/"
|
||||
|
||||
from openai import OpenAI
|
||||
client = OpenAI()
|
||||
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
import json
|
||||
|
||||
def embedding(s:str):
|
||||
if len(s)==0:
|
||||
return
|
||||
else:
|
||||
return client.embeddings.create(
|
||||
input=s, model="text-embedding-3-small" # nomic-embed-text text-embedding-3-small
|
||||
).data[0].embedding
|
||||
|
||||
class edge:
|
||||
a:str
|
||||
b:str
|
||||
sim:float
|
||||
def __init__(self, a:str, b:str, sim:float):
|
||||
self.a=a
|
||||
self.b=b
|
||||
self.sim=sim
|
||||
|
||||
def main(scale:json):
|
||||
|
||||
item=[]
|
||||
vec=[]
|
||||
|
||||
for i in scale["item"]:
|
||||
item.append(i)
|
||||
vec.append(embedding(scale["item"][i]))
|
||||
|
||||
simi=cosine_similarity(vec)
|
||||
|
||||
que=[]
|
||||
|
||||
for i,v in enumerate(simi):
|
||||
for j in range(0,i):
|
||||
# print(simi[i][j],',',item[i],',',item[j])
|
||||
que.append(edge(item[i], item[j], simi[i][j]))
|
||||
# print("\n")
|
||||
|
||||
sorted(que,key= lambda t : t.sim)
|
||||
|
||||
return que
|
36
TestFile/adhd.json
Normal file
36
TestFile/adhd.json
Normal file
@ -0,0 +1,36 @@
|
||||
{
|
||||
"name":"成人多动症自筛表 (6 itmes)",
|
||||
"introduction":1,
|
||||
"item":{
|
||||
"asrs1": "当一项工作最有挑战性的部分完成后,你经常难以做到对细节部分更精益求精吗?",
|
||||
"asrs2": "你经常很难把有组织性的任务、事情布置得井井有条吗? ",
|
||||
"asrs3": "当你从事一项需要脑力的工作的时候,你经常回避或者延长开始的时间吗?",
|
||||
"asrs4": "你经常很难记住约会或者一些必须完成的事情吗?",
|
||||
"asrs5": "当您必须安静地坐很长时间时,是否经常表现得坐立不安,手脚动作多?",
|
||||
"asrs6": "你是否在自觉做事情时表现得极度活跃,非完成某项事情不可,好像在被发动机所驱使一样?"
|
||||
},
|
||||
"value": {
|
||||
"从不":0,
|
||||
"很少":1,
|
||||
"有时":2,
|
||||
"经常":3,
|
||||
"总是":4
|
||||
},
|
||||
"result":[
|
||||
{
|
||||
"name": "ADHD",
|
||||
"sum": [
|
||||
"asrs1",
|
||||
"asrs2",
|
||||
"asrs3",
|
||||
"asrs4",
|
||||
"asrs5",
|
||||
"asrs6"
|
||||
],
|
||||
"re_sum": [],
|
||||
"result": {
|
||||
"0": 2
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
25
embedding.py
25
embedding.py
@ -1,25 +0,0 @@
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"]= "sk-PRJ811XeKzEy20Ug3dA98a34Af8b40B5816dE15503D33599"
|
||||
os.environ["OPENAI_BASE_URL"]= "http://154.9.28.247:3000/v1/"
|
||||
|
||||
from openai import OpenAI
|
||||
client = OpenAI()
|
||||
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
def embedding(s:str):
|
||||
if len(s)==0:
|
||||
return
|
||||
else:
|
||||
return client.embeddings.create(
|
||||
input=s, model="text-embedding-3-large" # nomic-embed-text text-embedding-3-small
|
||||
).data[0].embedding
|
||||
|
||||
a=embedding("I tend to draw fine distinctions between similar feelings (e.g., depressed and blue; annoyed and irritated).")
|
||||
# b=embedding("我喜欢界定两种相似的情绪(如沮丧和忧伤,烦恼和被激怒)。")
|
||||
# c=embedding("I like to define two similar emotions (e.g., frustration and sadness, annoyance and irritation).")
|
||||
|
||||
print(a,"\n",len(a))
|
||||
|
||||
# s = cosine_similarity([a, b, c])
|
||||
# print(s)
|
Loading…
Reference in New Issue
Block a user