ItemStudy/file_load.py

110 lines
2.3 KiB
Python
Raw Normal View History

import json
import os
import random
import pandas
import numpy
# import matplotlib
from sklearn.metrics.pairwise import cosine_similarity
from openai import OpenAI
os.environ["OPENAI_API_KEY"]= "sk-PRJ811XeKzEy20Ug3dA98a34Af8b40B5816dE15503D33599"
os.environ["OPENAI_BASE_URL"]= "http://154.9.28.247:3000/v1/"
client = OpenAI()
def batch():
scales = os.listdir("Scales")
items={}
for i in scales:
with open("Scales/"+i,"r") as scale:
tmp = json.load(scale)
for i in tmp["item"]:
items[i]=tmp["item"][i]
# print(items)
return items
2024-05-15 12:20:32 +00:00
def reverse_list():
scales = os.listdir("Scales")
items=[]
for i in scales:
with open("Scales/"+i,"r") as scale:
tmp = json.load(scale)
items.extend(tmp["reverse"])
# print(items)
return items
def old_type(str):
with open(str,"r") as file:
scale=json.load(file)
new={"item":{}}
for i in scale:
new["item"][i["name"]]=i["label"]
# print(i["name"],i["label"])
with open(str,"w") as file:
file.write(json.dumps(new))
def calc_similarity(scale):
item=[]
vec=[]
for i in scale:
item.append(i)
vec.append(client.embeddings.create(
2024-05-14 17:17:50 +00:00
input=scale[i], model="text-embedding-3-large" # nomic-embed-text text-embedding-3-small
).data[0].embedding)
simi=cosine_similarity(vec)
que=[]
for i,v in enumerate(simi):
for j in range(0,i):
que.append({"from":item[j], "to":item[i], "similarity":simi[i][j]})
return que
def similarity(force:bool = False,sort:bool=True):
if force or os.path.getsize("Temp/items.json") == 0:
que=calc_similarity(batch())
with open("Temp/items.json","w") as items:
items.write(json.dumps(que))
else:
with open("Temp/items.json","r") as items:
que = json.load(items)
if sort:
return sorted(que, key = lambda t : t["similarity"], reverse=True)
else:
return que
def make_data():
s=""
item = batch()
for i in item:
s+=i+','
s=s[:-1]+'\n'
for i in range(0,1000):
s += str(random.randint(0,4))
for j in range(1,20):
s += ',' + str(random.randint(0,4))
s+='\n'
2024-05-14 17:17:50 +00:00
with open("data.csv","w") as data:
data.write(s)
2024-05-14 17:17:50 +00:00
def corelation():
data = pandas.read_csv("Work/data.csv")
2024-05-15 12:20:32 +00:00
rev=reverse_list()
print(rev)
2024-05-14 17:17:50 +00:00
que={}
for i in data:
for j in data:
if i!=j:
try:
que[i,j]=data[i].corr(data[j])
2024-05-15 12:20:32 +00:00
if i in rev:
que[i,j]*=-1
if j in rev:
que[i,j]*=-1
que[j,i]=que[i,j]
except:
pass
else:
break
2024-05-14 17:17:50 +00:00
return que